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J .  Phys. A: Math. Gen. 23 (1990) 847-862. Printed in the U K  

Vector coherent state theory of the semidirect sum Lie algebras 
WSP(2N, R) 

C Quesnet 
Physique Nucleaire Theorique et Physique Mathimatique, CP229, Universite Libre de 
Bruxelles, Bd du Triomphe, B1050 Brussels, Belgium 

Received 11 September 1989 

Abstract. Positive discrete series irreducible representations of the semidirect sum Lie 
algebras wsp(ZN, R) = w( N )  3 sp(ZN, R) are given in wsp(2hr, R) 2 sp(2N, R )  3 U( N )  
bases. The branching rule for the reduction of a wsp(2N, R )  irreducible representation 
into a direct sum of multiplicity-free sp(2N, 8 )  irreducible representations is accounted 
for by the explicit construction of a wsp(ZN, W) 2 sp(ZN, W )  2 U( N )  basis of vector-valued 
holomorphic functions. Analytic results are obtained for the matrix elements of the 
wsp(ZN, R) mod sp(2N, R)  generators between basis states of lowest-weight U( N )  irreduc- 
ible representations. The wsp(2N, R) example shows that the applicability of the vector 
coherent state and K-matrix combined theory is not restricted to semisimple (and, more 
generally, reductive) Lie algebras, therefore pointing to a further extension of the method. 
In addition, it emphasises the importance of the graded structure of Lie algebras with 
respect to some U( 1 i generator belonging to their stability subalgebra. 

1. Introduction 

During the last few years, the vector coherent state (vcs) and K-matrix combined 
theory has played an ever increasing role in Lie group and Lie algebra representation 
theory (for a list of references see, for example, Hecht (1987), Rowe et a1 (1988)). 
Under some rather mild conditions to be detailed below, it indeed provides a simple 
systematic procedure for determining the explicit matrices for the ladder irreducible 
representations (irreps) of Lie groups and Lie algebras. 

vcs (also called partially coherent states) were introduced (Rowe 1984, Rowe et 
a1 1985a, Deenen and Quesne 1984b, 1985, Quesne 1986a, b) as a natural extension 
of standard (generalised) coherent states (Perelomov 1972, 1977). Such an extension 
is directly related to Mackey’s induced representation theory (Mackey 1968). Instead 
of inducing the ladder irrep of a group G from one-dimensional irreps of a subgroup 
H, as in standard coherent state theory, in its vector generalisation the induction is 
performed from finite-dimensional vector representations of H. The group G is then 
represented as a group of linear transformations in a Hilbert space of holomorphic 
vector-valued functions of a set of complex variables. 

The corresponding Lie algebra g is realised as a subalgebra of the universal 
enveloping algebra of some contracted Lie algebra g. The latter is the direct sum of 
a so-called ‘intrinsic’ representation of the subalgebra h associated with H and of a 
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Heisenberg-Weyl algebra w( v )  for v independent sets of boson creation and annihila- 
tion operators. Such a construction of g by expansion of g is known by physicists as 
a boson representation of g (Deenen and Quesne 1982, 1985). Hence vcs theory is 
also related to Lie algebra boson representations. 

The integral form of the vcs identity resolution being both difficult to obtain and 
cumbersome to use, an alternative procedure was developed for determining the vcs 
scalar product. This is the K-matrix technique (Rowe 1984, Rowe e? a1 1984, 1988, 
Deenen and Quesne 1984c, 1985, Castaiios et a1 1985, 1986, Hecht 1987, Le Blanc and 
Rowe 1988), which originated from a method (Deenen and Quesne 1982) used to 
convert a Lie algebra Dyson boson representation (Dyson 1956) into a Holstein- 
Primakoff representation (Holstein and Primakoff 1940). In this approach, the vcs 
scalar product is defined by specifying an orthonormal basis. For such purpose, a 
basis orthonormal with respect to a Bargmann scalar product (Bargmann 1961) is first 
constructed, then mapped onto an orthonormal vcs basis by means of a transformation 
K. In both steps, the full power of tensor calculus is exploited by making use of 
irreducible tensor coupling and Wigner-Eckart theorem with respect to h. Since the 
square of K obeys a linear recursion relation, it can be determined either numerically 
or even in some cases analytically. Once the transformation K has been obtained, the 
explicit matrices of the g generators in the orthonormal basis can be easily inferred. 

The applicability of the vcs and K-matrix combined theory is restricted to those 
cases where the subalgebra h of g is a compact subalgebra of maximal rank and g has 
a (2s + 1)-dimensional graded structure with respect to some generator A* of h, for 
which [ N ,  h] = 0. Such Lie algebra gradings play a basic role in the Tits-Koecher 
construction of finite-dimensional simple Lie algebras (Tits 1962, Koecher 1967), and 
in its extension by Kantor (1972). Since the building blocks of the latter are the ternary 
algebras (Bars and Gunaydin 1979), vcs theory is also related to these fundamental 
mathematical structures. 

K-matrix theory was originally introduced and applied to Lie algebras admitting 
a three-dimensional graded structure or Jordan decomposition (Rowe 1984, Rowe et 
a1 1984, Deenen and Quesne 1984c, 1985, Castafios et a1 1985, 1986, Hecht 1987). 
Recently, it was generalised to also cover the Lie algebras with a five-dimensional 
graded structure or Kantor decomposition (Rowe et a1 1988). Moreover, by studying 
an example of Lie algebra with a seven-dimensional graded structure, it was conjectured 
(Le Blanc and Rowe 1988) that this extended K-matrix theory is in fact valid for all 
(2s+  1)-dimensional gradings, whatever the value of s may be (except for the s = 1 
case, for which drastic simplifications occur). 

In both the theoretical developments and the applications so far carried out, only 
semisimple (or, more generally, reductive) Lie algebras were considered. However, as 
a close inspection would disclose, neither the vcs construction nor the K-matrix 
technique applicability do  in fact depend in any essential way on the semisimplicity 
of g. This point will be illustrated in the present paper by considering the case of the 
positive discrete series irreps of the semidirect sum Lie algebras wsp(2N, R) = 
w ( N )  3 sp(2N, R) in wsp(2N, R) 2 sp(2N, R) = u(N)  bases. 

This new application of vcs theory is of considerable interest not only because it 
paves the way to a further extension of the method, but also for its own sake. The 
wsp(2N, R) algebras indeed play an important role in various physical problems. On 
one hand, wsp(2N, R) provides a dynamical algebra for one of the most commonly 
used quantum mechanical systems, namely the N-dimensional harmonic oscillator 
(Wybourne 1974). On the other hand, wsp(6,R) finds an interesting application to 
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the microscopic theory of nuclear collective motions (Rowe and Iachello 1983, Quesne 
19873, 1988). 

In section 2, the definition of the wsp(2N, R) algebras and of their positive discrete 
series irreps is reviewed, and the existence of a Kantor decomposition with respect to 
an appropriate subalgebra is established. In section 3, the wsp(2N, R) vcs are intro- 
duced and shown to generalise the wsp(2, R) coherent states recently studied by Beckers 
and Debergh (1989). The corresponding representation of the algebras is also obtained 
and its relation with a previously derived boson representation (Quesne 1988) is 
discussed. In section 4, the Kantor decomposition of wsp(2N, R) and K-matrix theory 
are used to construct orthonormal vcs bases symmetry-adapted to wsp( 2N, R) 2 
sp(2N, R) 3 U( N). Finally, in section 5 ,  analytical expressions are obtained for the 
u(N)-reduced matrix elements of the wsp(2N, R) mod sp(2N, R) generators between 
two lowest-weight U (  N) irrep states. They extend to arbitrary values of N some results 
previously obtained for N = 2 (Quesne 1987b) and N = 3 (Quesne 1988) by means of 
a very tedious raising operator technique. 

2. The wsp(ZN, W) Lie algebras and their positive discrete series irreducible 
representations 

The wsp(2N, R) algebra is defined as the semidirect sum of a Heisenberg-Weyl algebra 
w(N)  and of a non-compact symplectic algebra sp(2N, R) (Quesne 1987a, 1988): 

The generators of the former are denoted by I, BY, B, = (B:)* ,  i = 1,.  . . , N, and those 
of the latter by E ,  = (EJ , ) - ,  0; = D:,, D, = DJI = ( D ; ) & ,  i, j = 1, . . . , N. 

wsp(ZN, R) = w( N) 3 sp(2N, R). (2.1) 

The sp(2N, R) non-vanishing commutators are given by 

[ E , ,  = S,kEi/  - 61/Ekj 

[ E , ,  D L I  = s,,D:/+ 8 , ~ : k  D A / l  = - s r k D / /  - s , /Djk ( 2 . 2 ~ )  

L D t j ,  = S l k E / j  + S ~ / E k ~  + 6jkE/8 + 6,/Eki 

showing that the operators E ,  span the maximal compact subalgebra U(  N) of sp(2N, R). 
On the other hand, those of w ( N )  

[ B , ,  B,I = 6,J (2.2b) 
express the bosonic character of the N pairs of operators Bi ,  B,, i = 1, . . . , N. Finally, 
the non-vanishing commutators of the sp(2N, R) generators with those of w( N ) ,  

L E ! ] ,  Bil = 

[D,,  Bkl = 6 i k B ,  + 6 j k B ,  

[Et,, B k l  = -6,kBj 

[DE 9 B k l  = - 6 i k B ;  - 6~kB: 
(2.2c) 

indicate that w(N)  is an invariant subalgebra of wsp(2N, R), and that B ,  and B, are 
vector operators with respect to sp(2N, R). 

One can simultaneously diagonalise the sp(2N, R) weight generators E ,  ,, . . . , E”, 
and the unit operator I. The subalgebra k, spanned by these N + 1 operators, is the 
analogue of a Cartan subalgebra for a semisimple algebra. According to their transfor- 
mation properties with respect to k, the set of wsp(2N, R) generators can be separated 
into three subsets of raising, weight, and lowering types as follows: 

where the subsets are separated by wider gaps. 
B ,  E ,  (i<j) E,, I B, a, E,/ ( i > J )  (2.3) 
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The maximal compact subalgebra of g=wsp(ZN,R) is the direct sum algebra 
h = U( l ) O u (  N ) ,  where U( 1) and U( N )  are spanned by I and E,,, respectively. It 
obviously contains the generalised Cartan subalgebra k. Moreover, wsp(2N, R) can 
be given a Kantor structure 

g = g - l o g - ,  0 g o o  g, 10 g+, 

go = h = u( 1 ) O u (  N )  = span{ I, E,, ; 1 s i, j N }  

[A; gpl = Pgp - 2 s  p s 2. (2.6) 

In other words, the elements of g belonging to various subspaces g, satisfy the 
commutation relations 

(2.4) 

where 

(2.5) 

contains the generator X of a U( 1) subalgebra giving the grading, i.e. such that 

“6” = E,, (2.8) 
where from now on we shall assume that there is a summation over dummy indices, 
we indeed obtain 

g-, = span{ D,  ; 1 s i, j G N }  

g+, = span{ B:; 1 G i s  N }  

g-, = span{B,; 1 s is N }  

g,, = span{Dh; 1 s i, j s N } .  
(2.9) 

The subalgebra h is not a maximal subalgebra of g. I t  is indeed contained in 

1 = u( l )Osp(2N,  R) = span{I, E,,, D i ,  D,; 1 s i, j s  N }  (2.10) 

1 =g-,Ogo@g+, (2.11) 

g =  wsp(2N, R) 2 1 = u ( l ) O s p ( 2 N ,  R) 2 h = u ( l ) @ u ( N )  (2.12) 

which can be decomposed as follows: 

and therefore has a Jordan structure. The subalgebra chain 

may be replaced by 

g = wsp(2N, R) 2 1’ = sp(2N, R) 2 h‘= U (  N )  (2.13) 

since the u(1) subalgebra of 1 and h, being spanned by the unit operator, only has 
trivial irreps which, for all purposes, may be omitted. The chain (2.13) will play a 
fundamental role in the vcs construction and the K-matrix technique to be detailed 
in the next two sections. 

In the present paper we are interested in those Hermitian irreps of wsp(2N,R) 
(exponentiating to unitary irreps of the corresponding semidirect product group 
WSp(2N, R) = W( N)OSp(2N,  R)), which are encountered in physical applications, 
namely ladder irreps with a lowest-weight state (Quesne 1987a, 1988). 

To build their carrier space, one starts from the basis states I{fl}a) of a U (  N )  irrep 
{fl} = { ~ , f l , .  . . a N } ,  which are annihilated by all the wsp(2N, R) lowering generators 
belonging to g- = gg,Og-,:  

(2.14) B,l{a}a) = D,l{ab) = 0. 
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Here a labels the basis of {Sr}, and Sr, = A ,  + n/2, where n is some positive integer and 
{ A l A 2 . .  . A N }  is some partition into non-negative integers. The space of states I{R}a) 
will be referred to as the lowest-weight U( N )  subspace. The U( N )  group leaving this 
subspace invariant, the corresponding algebra U( N )  will be referred to as the stability 
subalgebra of wsp(2N, R ) t .  

Application of the raising generators belonging to g, = g + , O g + z ,  i.e. the operators 
BT and Db, then generates the remaining basis states of the wsp(2N, R) irrep, to be 
denoted by ((0)). Its lowest-weight state is that of the lowest-weight U (  N )  irrep, 

Kn)) = I{fl)W. (2.15) 

In addition to (2.14), it satisfies the relations 

(2.16) 

3. Vector coherent states of wsp(ZN, R) 

Following the general prescription of Rowe et af (1988), the construction of wsp(2N, R) 
vcs is based on the complex extension of the Kantor decomposition (2.4): 

g'= gf,Og',Og;Og:,OgSz. (3.1) 

2 = y,B, + $Z,,D,/ = '/I (3.2) 
where the N ( N + 3 ) / 2  complex variables y ,  and z,, can be regarded as coordinates for 
the complex extension of the factor space G / H  = WSp(2N, R) / [U(  l ) O U ( N ) ] .  

From (2.9), an arbitrary vector Z E gf = gf ,OgYz can be expanded as 

The wsp(2N, R) vcs are then defined by 

ly, z; a )  = exp(Z-)l{fl}a) = exp(y~BT+tz:o,)l{n}a).  (3.3) 
They are parametrised by the complex variables y , ,  z,,, and by the discrete index a 
labelling a basis of the lowest-weight U( N )  subspace (thence the alternative denomina- 
tion of partially coherent states used elsewhere (Deenen and Quesne 1984b)). In the 
special case of wsp(2, R), the u(1) irreps being one-dimensional, the vcs (3.3) reduce 
to standard coherent states 

ly, z )  = exp(y*B'+tz*D~)l{n}) .  (3.4) 
The latter were recently studied by Beckers and Debergh (1989) for the irrep((fi)) = ((i)). 

In the general case, the vcs representation of an arbitrary state Iq), belonging to 
the irrep((R)) carrier space, is given by 

where 

+Strictly speaking, the stability subalgebra of wsp(ZN,R) is u ( l ) @ u ( N ) .  As explained in the text, u(1) 
may be omitted. 
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The function 'u(y, z )  is therefore holomorphic in the variables y ,  and z,, and takes 
vector values in the lowest-weight U( N )  subspace. 

The carrier space for the wsp(2N, R) vcs  representation is defined as the Hilbert 
space of all such holomorphic vector-valued functions which are square integrable 
with respect to the vcs  scalar product 

W ' I W " C S  = j [ W Y ,  Z)l*WY, z )  d d Y ,  z )  (3.7) 

where du(y, z )  is the vcs  measure. The latter will not be explicitly determined in the 
present paper. We shall instead prove the existence of the scalar product (P'IY)vcs, 
and therefore of the corresponding measure du(y,  z), by specifying an orthonormal 
basis with respect to this scalar product. Such a construction will be carried out in 
the next section by the K-matrix technique. 

The v c s  representation of an arbitrary operator X acting in the carrier space of 
((a}} is defined by 

the vcs  representation of the wsp(2N, R) algebra is readily obtained: 

UD,) = v,, 
r ( E,, ) = E , + 8; ) + 8:; ) 

w,) = d l  

8;; ) = y,a, %:;' = Z & V ,  
(3.10) 

r ( B : )  = Z8,a, + Y ,  

r(Di) = Z , k l E ~ k + Z , k E i k + ( Y r Z , k + Y , ~ i k ) a k  +ZikZ , lVk l+yzy / .  

Here a ,  and 0, are differential operators defined by 

a, = a / a Y ,  v, = (1 + 6,)a/az,, (3.11) 

and E,, is the intrinsic representation of E,,, i.e. the representation carried by the 
lowest-weight U( N )  subspace 

(3.12) 

At this point, it is worth noting that equation (3.3) is not the only possible definition 
of vcs  for wsp(2N, R). Since the lowering generators B, and D,, commute with one 
another, they can be diagonalised simultaneously. As shown in appendix 1, their 
common eigenstates can also be chosen as vcs  (Deenen and Quesne 1984b), thereby 
generalising the coherent states first considered for su( 1, 1) = so(2, 1 )  = sp(2, R) by 
Barut and Girardello (1971), and later extended to sp(2N, R) by Deenen and Quesne 
(1984a). Such alternative vcs  lead to another wsp(2N, R) vcs  representation F, 
equivalent to r, and directly related to a wsp(2N, R) boson representation introduced 
recently (Quesne 1988). 



Vector coherent state theory of wsp(2N, R) 853 

4. Construction of an orthonormal wsp(ZN, R) 3 sp(ZN, R) 13 u(N) basis 

Following Rowe et al (1988), we start by defining a basis of states which is orthonormal 
with respect to a Bargmann scalar product (Bargmann 1961) 

where 

(4.2) 

(4.3) 

For such a purpose, we note that the variables y ,  and ztJ transform under U( N )  in 
the same way as the g: basis elements Br and D i ,  

i.e. as the components of {lo}  and {20} irreducible tensors, respectively (here a dot 
over a numeral implies that this numeral is repeated as often as necessary). We may 
therefore construct two sets of polynomials P'p"'(z) and Qvo'(y), transforming as the 
components of tensors of rank { v} and (10) under U( N ) .  Here { v} = { v ,vz  . . . v k }  
denotes a partition into non-negative even integers, {IO} represents a symmetric U( N )  
irrep, and p, y label the rows of { v} and { l o }  respectively. These polynomials span 
the spaces of polynomials in zo and y , ,  and they may be chosen orthonormal with 
respect to the Bargmann measure so that 

(4.5) 

[ r ( E 4 J ) 9 y k 1 = S , h Y ,  L r (  Et]  1 9  'k/ l  = sJkz , /  + 6,/z,k (4.4) 

(P'P" rlprr) = 8 ,  Y 1 { 116, p 

(Ql'o'lQ1'ot)= 6,  / a y , y .  (4.6) 

PPW)(Z) = ~ ~ ( { v } ) ( z l l ) ' v ~ ~ y ~ ' ' ~ ( z 1 2  I z ) ( y ~ - " ~ " 2 . ,  . ( z ,  \ , I  \ ) l \  

and 

Their highest-weight components are given by (Le Blanc and Rowe 1987) 

(4.7) 

Q i t } ( y )  = ( / ! ) - I ' ~ ( y 1 ) /  (4.8) 
where 

(4.9) 
and z1 r,l denotes the determinant of order r formed from the first r rows and r 
columns of the N x N matrix z = )I  zZJ 1 1 .  

We now observe that the vcs representation of u (N)  is compatible with the 
Bargmann scalar product (4.1), which means that the Hermitian adjoint r - ( E , , )  of 
r( E , )  with respect to this scalar product satisfies the relation 

A ( = ( ( Et] -1 = ( (4.10) 
as can be easily checked from (3.10). Hence it is possible to construct an  orthonormal 
Bargmann basis of holomorphic vector-valued functions which reduces the stability 
subalgebra U( N )  

(4.11) (Y, z i ( (n ) ) { lO} (w) {v }p{h) /1 )  = [ P ' " ' ( z )  x [Q""'(y) x I{~})li"tl",h'. 
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Such functions are obtained by coupling first the basis states I{fi}cr) of the lowest-weight 
U( N )  subspace to the polynomials QYo'(y),  then the resulting states to the polynomials 
P g ' ( z )  (note that in the present paper all couplings are assumed to be ordered 
sequentially from right to left). They are characterised by a given U( N )  irrep { h } ,  a 
given row p, and a set of multiplicity labels, The latter are the ranks { I O }  and { v} of 
the polynomials in y and t, the intermediate U (  N )  irrep { U } ,  and the multiplicity label 
p distinguishing between repeated irreps { h }  in { w }  x { v}. As a matter of fact, { I O }  is 
redundant since I is fixed by {fi} and { w }  as 1 = Z, ( w ,  -fi,). 

We next seek a transformation K mapping the orthonormal Bargmann basis onto 
an orthonormal vcs basis 

(y ,  zl4(((n)){IOl(w){ . } p { h } p  1) = (Y,  ZI K I((fi)){lO)(w){ v ) p { h } l * ) .  (4.12) 

The inverse transformation K - '  maps the wsp(2N, R) vcs representation r, which is 
unitary with respect to the vcs  scalar product, onto an equivalent representation y ,  

y ( X )  = K - ' T ( X ) K  (4.13) 

which is unitary with respect to the Bargmann scalar product: 

y ( x - )  = y i ( X )  = K + r ' ( x ) ( K - ' ) + .  (4.14) 

From (4.10), it results that K may be chosen so that the vcs and Bargmann 
representations of,wsp(2N, R) are identical when restricted to the stability subalgebra 
u ( N ) ,  i.e. 

U E , )  = Y ( E , ) .  (4.15) 

Thus K is diagonal in the U( N )  representation labels { h}, and independent of p :  

( ( ( n ) ) { m w ' ) {  V'IP r { h 7 p  'I K l((.n)){ IOHw){ VIP{ h } p )  

(4.16) 

Since the construction of orthonormal sp(2N, R) 2 U (  N )  bases has been extensively 
studied elsewhere (Rowe 1984, Rowe et a1 1984, 1985b, Deenen and Quesne 198413, 
19851, considerable simplification arises if we require the K operator to give vcs  basis 
states reducing the subalgebra chain (2.131, and hence classified by the following labels 

- - I,{ h } a p  ,+(((n)){I'o}(U'){ v '}p '{h}l  K i((n)){IO}(w){ v } p { h } ) .  

(4.17) 

where ( U ) ,  in particular, characterises an sp(2N,R) irrep. We may then restrict the 
construction of an orthonormal vcs  basis to that of a basis of lowest-weight u ( N )  
irrep states 

(Y, zlKl((n)){IO>(w){O}{w)/l). (4.18) 

From (3.10), it follows that the states (4.18) satisfy the relation 

UQ,)(y, zlKl((n)){IO}(w){O}}w}p) = V , ( y ,  zIKI((n)){ IO}(w){O}{w)p) = 0. (4.19) 

Hence they must consist of a superposition of z-independent Bargmann basis states 

(4.20) (Yl((fi))IrO}(w){O}{w}p*) = [Q"O'(y) x I{nHll"'. 
This implies that 

(4.21) 
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where X ( { w } )  is a 1 x 1 submatrix of the full K matrix. Moreover, the vcs states (4.18) 
can be defined uniquely by choosing X ( { w } )  real and normalised in such a way that 

Arguments entirely similar to those of Rowe et a1 (1988), and based on the 
Hermiticity properties of the wsp(2N, R) generators, as well as on equations (4.13) 
and (4.14), easily lead to the following recursion relation for YL!({u})~: 

.%({a}) = 1 .  

~t({w’})2(((n)>{i ’o}(w’){o}{wf}~t [rcor( B)I’ ll((szlr>{ @(w) {o } {w} )  

(4.24) 

is a combination of Casimir operators. Furthermore, as a consequence of the u(N) 
tensorial properties of y ,  and z , ,  the only non-vanishing values of the reduced matrix 
element on the left-hand side of (4.22) correspond to l’= I +  1 ,  and { U ’ }  = { w + A “ ’ ( i ) } ,  
i = 1, , . . , N, while the summation on the right-hand side runs over { U ” }  = { w  - A “ ) ( j ) } ,  
j = 1, , . . , N, with I”, { U”} fixed by I” = I - 1, { U“} = {2O}, and p” not needed. Here A ‘ ’ ) (  k )  
denotes a row vector of dimension N with vanishing entries everywhere except for 
the component k, which has value unity. 

As shown in appendix 2, all the reduced matrix elements appearing in (4.22) can 
be readily evaluated by using standard u ( N )  recoupling techniques. By taking these 
results into account, the recursion relation becomes 

/ \ - 1 1  

(4.25) 

The sum over j on the right-hand side of (4.25) is performed in appendix 2 ,  so that 
the recursion relation finally takes the simple form 

X ( { w  + A“’( i)})’= (n (0, +Cl ,  - i - j ) ( w ,  + w, - i - j ) - ’ ) X ( { w } ) ’ .  (4.26) 
I 
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Its solution is given by 

1 - 1  

x n ( w , + n ,  - i - j -  1 ) ! (0 ,  +wJ - i - j -  l ) !  
( J = l  

(4.27) 

thus completing the construction of an orthonormal vcs  basis of lowest-weight U (  N )  
irrep states. 

Observe that such states are in one-to-one correspondence with the corresponding 
Bargmann states (4.20) since none of the latter is annihilated by the K operator. This 
is due to the non-compact nature of wsp(2N, R). From vcs theory, we have therefore 
found that the only sp(2N, R) subirreps (0) appearing in the wsp(2N, R) irrep ((0)) 
are those which can be obtained, as in equation (4.20), by U( N )  coupling a lowest-weight 
u ( N )  basis state I{n}cr) to a polynomial QYo)(y) ,  whose degree I runs over all non- 
negative integers. This result is consistent with, and in fact directly proves, the branching 
rule (Quesne 1988) 

Rl  n\-l  
wsp(2N,R)5sp(2N,R):((R))~ i . . .  O ( w )  (4.28) 

w l = R ,  W ? = R 2  w..=n\ 

where each ( U )  is multiplicity free. 

5. Matrix elements of the wsp(ZN, R) mod sp(ZN, W) generators 

Having determined the X ( { w } )  submatrices, we can now easily calculate the U (  N ) -  
reduced matrix elements of the wsp(2N, R) mod sp(2N, R) generators provided we 
restrict ourselves to lowest-weight U (  N )  irrep basis states. For such purpose, we shall 
use the Bargmann states (4.20) and the y representation (4.13) of the wsp(2N,R) 
algebra. 

Since the operators Bi commute with the sp(2N, R) lowering generators D,, they 
can only lower states of a lowest-weight u ( N )  irrep to other lowest-weight irreps. 
Hence taking U(  N )  reduced matrix elements of (4.13) between two states of the type 
(4.20), we obtain 

( ( (n)){ l ’O}(w‘){O}{w‘}  I l W { w ’ } )  Y ( B )  ll((n)){lo}(w){o}{w}) 

= (((n)){1’o}(wf){o}{o‘}t l r(B)X({w}) Il((n)){lO}(w){O}{w}). (5 .1)  
Combining this result with equation (3.10) leads to the relation 

( ( (n ) ) { f ’ o } (w ’ ) {o } {o ‘ }  II Y ( B )  ll((sz)){lo}(w){o}{w}) 

= (x( {w}) /~( {w’ } ) ) ( ( (n) ) } l ’o} (w’ ) {o} {w’ } l l~ l l ( (0) ) { lo} (w){o}{w})  (5.2) 
from which the reduced matrix elements of y (  Bt)  can be obtained through Hermitian 
conjugation as 

(((~)){f’o}(w’){o}{w’}ll Y ( B + )  ll((n)){lo}(w){o}{w}) 

= (x({w’}) /x({w}))(((0)){ f ’o}(w’){o}{w’} l l~ Il((n)){fo}(w){o}{W}). (5.3) 
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From (4.26), (A2.3) and (A2.12), one can easily derive the following explicit 
expressions for the non-vanishing U(  N )  reduced matrix elements of y(  B’) and y (  B ) :  

((W)){I + m w  + A Y i ) ) { O b J  + W i ) l I l  Y ( B + )  ll((a)){lO}(w){O}{w>) 

(5.4) 

x [ ( w , + w ,  - i - j -  1 - 6 , , ) ( w ,  - w , + j -  i -  I)]-’  . (5.5) ) 
They extend to arbitrary N values the results given for N = 2  in equation (30) of 
Quesne (1987b) and for N = 3  in equations (3.56) and (3.57) of Quesne (1988). Note 
that the sign discrepancy between the latter and equations (5.4) and (5.5) is due to a 
different phase convention for the u(3) generator matrix elements. Quesne (1988) 
indeed uses Hecht’s phase choice (Hecht 1965), whereas Gel’fand and Tseitlin’s 
convention is used throughout the present paper (Gel’fand and Tseitlin 1950). 

As a final point, note that if the sp(2N, R) 2 U( N )  reduced Wigner coefficients for 
the coupling of a unitary irrep ( w )  with a non-unitary vector irrep were available, it 
would be possible to derive the sp(2N, R) triple reduced matrix elements of y ( B t )  and 
y (  B), and consequently the matrix elements of these operators between two arbitrary 
basis states of ((a)). The determination of those reduced Wigner coefficients is, however, 
made difficult by the multiplicity labels present in an orthonormal sp(2N, R) 2 U (  N )  
basis. 

Appendix 1. An alternative vector coherent state representation of wsp(ZN, R) 

The purpose of the present appendix is to review the definition and some properties 
of alternative vcs for wsp(2N, R). 

Let us consider the common eigenstates ly, z ;  A )  of the set of commuting non- 
Hermitian operators B,, 1 6  i s  N, and D,,, 1 s i < j s N, corresponding to some com- 
plex eigenvalues y ?  and z ; ,  respectively: 

(Al . l )  

Here A is an extra label characterising possibly independent solutions of (Al . l ) ,  and 
a round bracket notation is used to distinguish the eigenstates Iy, z; A )  from the vcs 
ly, z ;  a ) ,  defined in (3.3). 

It can be easily proved that ( A l . l )  does indeed have solutions and, moreover, that 
the number of independent solutions is equal to the dimension dim{R} of the lowest- 
weight u ( N )  irrep {a}, so that the extra label A may be identified with the index a 
labelling the basis states of the latter. Indeed let @ ( A ’ ( y * ,  z*; y ’ ,  z ‘ )  represent the states 
Iy, z; A )  in the vcs representation defined in section 3. From (3.5), i t  follows that 

(Al.2) 

B l l Y , z ; ~ ) = Y ? l Y ,  z ; A )  Q, ly, z ;  A 1 = ~ ; I Y ,  z ;  A 1. 

@ ( * ’ ( Y * ,  z*;  y ’ ,  z ’ )  = 1 l { a } a ’ ) @ ; ’ ( y * ,  z * ;  y ‘ ,  z ‘ )  
a 
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where 

@:,’(y*, z*; y ‘ ,  z’) = ( y ‘ ,  z’; a’ly, Z; A ) .  (A1.3) 

By taking (3.10) into account, equation (Al . l )  is replaced by the system of partial 
differential equations 

a:@Y’(y*,  z*; y ’ ,  z’) = yT@h“’(y*, z*; y ’ ,  z‘) 
(A1.4) 

where a: = a/ay:, and V b = a/&:, . Arguments entirely similar to those of Deenen and 
Quesne (1984b) and Quesne (1986b), that we shall not reproduce here, enable one to 
show that (A1.4) has exactly dim{R} independent solutions, labelled by A = a 

(A1.5) 

Equations (A1.2) (with A = a) and (A1.5) uniquely define the states ly, z; a), which 
may be chosen as an alternative definition of vcs for wsp(2N, R).  

In the corresponding vcs representation of wsp(2N, R), an arbitrary state IW), 
belonging to the irrep ((a)) carrier space, is represented by the holomorphic vector- 
valued function 

V:,@.h“’(Y*, z*; y ’ ,  z’) = z:@:’(y*, z*; y ’ ,  E ’ )  

@,ba’(y*, z*; y ’ ,  z‘) = S, ,, exp(y:y? +4zhzt). 

(A1.6) 

(A1.7) 

An arbitrary operator X ,  acting in the same space, is represented by F ( X ) ,  whose 
definition is 

(A1.8) 

It is straightforward to show that the two wsp(2N, R) vcs representations r and f 

F(x) = r+(x+) (A1.9) 

where, as in (4.10) and (4.14), Ti is the Hermitian adjoint of r with respect to the 
Bargmann scalar product (4.1). For X = B:, for instance, choosing for 19) any vcs 
ly’, z’;  a‘), we indeed obtain 

(A1 . lo)  

are related by the equation 

f ‘ ( B h ,  z b ’ ,  z‘; D ’ )  = l{flb)(y’, z’; a’lB,ly, z; a)*. 
U 

Since, from (3.10) and (A1.4), 

( y ’ ,  z’; a’lB,ly, z; a) = d : ( Y ’ ,  z’; a’ly, z; a) = y W ,  z’; “‘IY, z; a) 

it follows from (A1.lO) that 
( A l . l l )  

f (  B:) = y ,  (A1.12) 
in agreement with (A1.9) and (3.10). 

As a consequence of (4.13), (4.14) and (A1.9), we finally get the relations 

y ( X )  = K + F ( x ) ( K + ) - ’  (A1.13) 

r(x)  = K K ’ ~ ( X ) ( K K ~ ) - ’  (Al .  14) 
and y of wsp(2N, R) .  thus showing the equivalence of the three representations r, 
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Note that by substituting in the usual way (Deenen and Quesne 1984b) boson 
creation and annihilation operators a,, = a,, , b:, a,, = (a:,)?, and b, = (b:)' for z,,, y , ,  
V,, and a,, we directly recover the boson representation of wsp(2N, R), recently obtained 
by Quesne (1988). 

A i  

Appendix 2. Recursion relation for X ( { w } ) *  

The aim of the present appendix is to prove that the recursion relation (4.22) for 
X ( { U } ) ~  can be put into the simple form (4.25) or (4.26). For this purpose, we have 
to evaluate the various U (  N )  reduced matrix elements appearing in (4.22). 

The reduced matrix elements of the rank {IO} irreducible tensor Q""(y) = y can 
be expressed as 

(((W 1 + 1 @(U + A' '( i)){O>{U + A" '( i I1 y II ((W Ib}(w){O}{ w 1) 
= U ( { n } {  IO}{w +A"'( i)}{ 16); { w } {  I + lo})({ I + 16}11yil{ IO}) (A2.1) 

where the U coefficient is a U( N )  Racah coefficient in unitary form (Hecht et a1 1981, 
1987), which can be evaluated from equation (A10) of Le Blanc and Hecht (1987). 
As a consequence of (4.81, the reduced matrix element on the right-hand side of (A2.1) 
is simply given by 

({I + lo} Ily ll{ IO}) = m. (A2.2) 

Hence, equation (A2.1) becomes 

(((WI+ 16}(U + A Y i ) ) { O } b  + A ( ] ' (  i)}Ilvll((n)){IO}(w){6)(w>) 

= (E, (U, - wk + k - i +  1) (U,  -ilk + k - i +  1) (A2.3) 

t Note that the reduced matrix elements of Q'" ' (y )  cannot be directly evaluated without making use of the 
decomposition (A2.5) because, as far as the author knows, the required Racah coefficients cannot be found 
in the literature. 
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Here the summation runs over {O} = { w  + A " ' ( i )  - A ( " ( j ) } ,  { U }  whenever i Zj, and 
over {0} = { w }  whenever i = j ,  and the corresponding Racah coefficients can be calcu- 
lated from equation (A9) of Le Blanc and Rowe (1987). After inserting (A2.3) into 
(A2.6), we obtain 

(((a)){ I + l o } (  w + A' '( i)}{O}{ w + A" )( i)} lp-ioJ( D') 

x / l((Q)){l-  lO}(w - A ' " ( j ) ) { O } { w  -A"'(J)}) 

(A2.7) 

In coupled tensor form, equation ( 4 . 2 3 ~ )  can be rewritten as 
r ( l ! (B+) = ( - l ) N - l d m [ p { * o ) ( z )  x ~(o-l}(a)]{101 (A2.8) 

where P"o}'(z) = z is a rank (20) irreducible tensor, defined in accordance with equation 
(4.7), and Q'o"' (a) = d is a rank {0 - 1) irreducible tensor, which is Hermitian conjugate 
to Q""(y) = y and whose lowest-weight component is given by 

Q/.y(a)  = d] .  (A2.9) 

The U (  N )  Wigner coefficients required in (A2.8) are taken from Biedenharn and Louck 
(1968). 

(((a)){ I - lo}( w - A' "( j ) ) {  2O}{ w + A" '( i ) }  / I  r" I ) (  B') Il((sZ)){ 1O}(w){O}{w}) 

The reduced matrix elements of r ' I J ( B ' )  can therefore be expressed as 

= ( - l ) N - l d m U ( { w } { O -  l } { w  +A"'(i)}{20}; { w  - A ( ' ) ( j ) } { l O } )  

X ({2O}1lzl1{O})(((n)){l- 1OHw - A("( j ) ) {O}{w - A( ' ) ( j ) I I Id  

x ll((a))IIO>(w>{O}{w>) ( A2.10) 

where the reduced matrix element of z is given by (Le Blanc and Rowe 1987) 

({2O}llzll{0}) = 1 (A2.11) 

the reduced matrix element of a can be evaluated from that of y ,  given in (A2.3), as 
follows 

( ( ( W I -  1OHw - A i l ) ( j ) ) { O } { w  - A " J ( ~ ) } I I d I I ( ( ~ ) ) { ~ O } ( ~ ) { O } { w } )  

= ( - l ) J - (  ( w j - W k + k - j - l )  (U j  - 0 k  + k - j )  ) ' I 2  (A2.12) 
k + J  

and the Racah coefficient can be calculated from equation (A9) of Le Blanc and Hecht 
(1987) by using some symmetry properties of Racah coefficients (Hecht et a1 1981). 
Equation (A2.10) then becomes 

(((a)){ I - l o } ( @  -A("(  j ) ) { 2 O } { w  + A ' ' J (  i)}I/r("(B') l l ( (a) ){1O>(w){O}{w})  

(A2.13) 
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From (4.23d), the reduced matrix elements of r ' " ( D t )  can be written as 

(((R)){ I - lo}( w - A" I (  j)){2O}{ w + A' I '( i)} I (  I-"'( ZY) 

x li((fL)){ I - lo}(@ - A' ' '( j ) ) {O}{  w - A' ' I (  j )}) 

= [A({2O}, {w+A"'(i)})-A({O}, { w  -A'"(j)})l 

x (((a)){/ - lo}(@ - A '  ' I (  j)){2O}{w +A") (  i)}l/z 

x li((Ct)){I- lO}(w -A")(j)){O}{w -A")(j)}) (A2.14) 

where 

1 
A ( {  v}, { h } )  = - 2 ,  

[ h , ( h ,  + N - 2 i +  1) - v,( v, + N - 2 i +  l ) ]  (A2.15) 

is the eigenvalue of the operator A, defined in (4.24), corresponding to the state (4.11). 
Since, by using (A2.11), the reduced matrix element of z can be shown to be equal to 
1, we find 

(((a)){ I - lo}( w - A"'(j)){20}{ w + A"'( i ) }  1 1  r' ' I (  0') 

x ~ ~ ( ( ~ ) ) { I - l O } ( w - A " ' ( j ) ) { O } { w - A " ' ( j ) } ) = w , + w J - i - j .  (A2.16) 

By inserting (A2.3), (A2.7), (A2.13) and (A2.16) into (4.22), it is now a simple 
matter to derive equation (4.25). It then remains to prove that the latter is equivalent 
to equation (4.26). 

The sum over j  on the right-hand side of (4.25) can be performed by using complex 
function residue theory (Le Blanc and Rowe 1987). In terms of the partial hooks 

pJ, = w J + N - j  P, ,=n,+N-j (A2.17) 

it can indeed be rewritten as 

where Resf(pjN) is the residue of the complex function 

at the point pJN. Since 

equation (4.26) is finally obtained. 
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